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ABSTRACT
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse effect of antiresorptive medications administered
for control of osseous malignancy, osteoporosis, or other bone metabolic diseases. Despite being reported in the literature two
decades ago, MRONJ etiology, pathophysiology, and progression remain largely unknown, and current nonoperative or operative
treatment strategies are mostly empirical. Several hypotheses that attempt to explain the mechanisms of MRONJ pathogenesis have
been proposed. However, none of these hypotheses alone is able to capture the complex mechanistic underpinnings of the disease.
In this minireview, we aim to highlight key findings from clinical and translational studies and propose a unifying model for the path-
ogenesis and progression of MRONJ. We also identify aspects of the disease process that require further investigation and suggest
areas for future research efforts toward calibrating methodologic approaches and validating experimental findings. © 2023 The
Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
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Introduction

Medication-related osteonecrosis of the jaw (MRONJ) is
defined as exposed bone or bone that can be probed

through a fistula in the maxillofacial region that has persisted
for more than 8 weeks in patients with current or previous treat-
ment with antiresorptives alone or in combination with immune
modulators or antiangiogenic medications in the absence of
prior radiation therapy or metastatic jaw disease.(1,2) Current
treatments of MRONJ are mostly empirical and, depending on
the severity of the disease, range from observation, antibiotics,
and oral hygiene to sequestration and segmental resection of
the affected necrotic bone.(2)

Medications that have been associated with MRONJ include
bisphosphonates (BPs), denosumab, and romosozumab.(2) BPs
exert their effect by binding to the bone mineral and upon their
release during active remodeling are internalized by osteoclasts
and inhibit osteoclast function by blocking significant metabolic
pathways and inducing cell apoptosis.(3) Denosumab binds to

and inhibits the receptor activator of NF-κB ligand (RANKL). In
bone, RANKL is produced by several cell types, including osteo-
blasts, osteocytes, stromal bone cells, and immune cells and is
a major regulator of osteoclast precursor commitment and oste-
oclast differentiation and function.(4) Through its RANKL binding
action, denosumab inhibits osteoclastic numbers and activity.(5)

Romosozumab binds to and inhibits sclerostin, a molecule pre-
dominantly expressed in osteocytes that is an inhibitor of Wnt
signaling. By inhibition of sclerostin, romosozumab activates
Wnt signaling in osteoblastic precursor cells, mature osteoblasts,
and osteocytes and induces bone formation, while inhibiting
bone resorption. Romosozumab has recently entered the medi-
cal field and, although its pharmacologic action on sclerostin
inhibition is well understood, the biologic mechanisms of its ana-
bolic and anticatabolic effects are not well delineated.(6)

Local risk factors associated with the development of MRONJ
have been identified.(2) These include surgical procedures such
as tooth extraction or implant placement, the presence of dental
disease such as periodontal or periapical disease, and
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mechanical trauma through ill-fitting dentures or mastication in
anatomically prone areas.(7) Tooth extraction is the most preva-
lent factor predisposing to MRONJ and reported present in
60% to 80% of cases.(8–10) A small percentage of cases do not
appear to be associated with any obvious local factors and are
characterized as spontaneous MRONJ.(11) Whether these cases
are truly spontaneous or the result of an unidentified factor that
predisposes to the disease development remains unknown,
although mostly likely the latter.

Although MRONJ was initially reported in 2003(12,13) and
described in 2004,(14) the pathophysiology of the disease
remains largely unknown. Multiple hypotheses have been pro-
posed to explain the mechanisms of MRONJ development.(15–27)
15–27) These hypotheses include but are not limited to:

• an increased accumulation of bisphosphonates in the jaws
due to a high rates of bone turnover;

• a direct toxic effect of bisphosphonates in the oral mucosa;
• a higher sensitivity of oral cell types, such as osteoblasts, peri-
odontal fibroblasts, or mesenchymal stem cells to
bisphosphonates;

• a distinct sensitivity of the jaws versus long bones to develop-
ing osteonecrosis reflected by the diverse composition,
embryologic origin (neural crest versus mesoderm), or devel-
opmental pattern (intramembranous versus endochondral);

• an altered immune response of the oral tissues to injury or
infection;

• defective wound healing of the oral tissues in the presence of
antiresorptives;

• inhibition of angiogenesis;
• a genetic framework that predisposes patients to MRONJ
development;

• systemic comorbidities that compound the healing of the oral
tissues.

However, none of these theories alone can fully explain the
disease process and capture all disease attributes. It appears that
MRONJ is a multifactorial disease that involves multiple events
that occur simultaneously and create the conditions that precip-
itate the development of the disease.

Key Parameters for Formulating a Model for
MRONJ Pathophysiology

The purpose of this brief review is not to review the different
hypotheses and provide supporting evidence for each one of
them. This has been done, in detail, in many prior publications
(see above). Moreover, our goal is not to perform an exhaustive
review of the literature and report on all significant findings of
detailed processes, target molecules, or cell types thatmight par-
ticipate in the disease process. Rather, our goal is to provide a
unique angle by highlighting published evidence from clinical
and translational studies and propose a unifying model for the
pathogenesis and progression of the disease. We also aim to
identify areas of the disease process that remain unknown and
provide recommendations for areas of future research efforts
toward calibratingmethodologic approaches, enhancing validity
of experimental findings, and uncovering mechanistic under-
standing of the disease for improved therapeutic interventions.

In formulating a model that outlines the process of MRONJ
onset, establishment, and progression, we have considered find-
ings from clinical, translational, and in vitro studies combined
with our clinical experiences from MRONJ patient care and our

understanding of experimental models of disease, their advan-
tages, disadvantages, and technical challenges, as well as the
principles of basic bone homeostasis. Key parameters that we
have integrated in this model include:

• Consideration of only BPs and denosumab and their associa-
tion with MRONJ. Robust clinical and translational observa-
tions provide strong evidence of the association between
antiresorptives (BPs and denosumab) with MRONJ.(1,2)

Although romosozumab treatment has been linked to a low
risk of MRONJ, only a few MRONJ cases have been reported,
without any clinical or radiographic findings and treatment
outcomes.(28,29) Given the limited information on romosozu-
mab and MRONJ, additional research is needed to refine its
association and risk estimate for MRONJ. Similarly, MRONJ-like
lesions have been reported in patients not on antiresorptives,
but treated with antiangiogenics, immunomodulators, che-
motherapeutics, or tyrosine kinase signaling inhibitors.(30–32)

The evidence linking such medications to MRONJ is not
strong.(2) Furthermore, whether the pathophysiologic mecha-
nisms of bone exposure associated with antiresorptives versus
other medications is the same is unknown. As such, we have
excluded romosozumab and other medications from the pro-
posed model.

• The central role of inhibited osteoclastic activity as disease
instigator. This is strongly supported by the fact that two phar-
macologic agents (bisphosphonates and denosumab) that
potently target/inhibit osteoclast function through diverse
mechanisms result in indistinguishable clinical and experi-
mental disease phenotypes. The only difference between
bisphosphonates and denosumab that has been reported is
the higher incidence of MRONJ in osteoporotic denosumab
users.(2) But even this difference could be likely explained by
the more robust resorption inhibition effected by denosumab.

• Nonosteoclastic effects caused by bisphosphonates as etio-
logic factors in MRONJ pathogenesis without supporting
experimental or at least theoretical evidence that denosumab
could cause similar effects or vice versa. This would include the
great majority of in vitro reports on direct effects of bispho-
sphonates in various cell populations, including osteoblasts,
fibroblasts, endothelial cells, periodontal ligament cells, kerati-
nocytes, stem cells, etc.(33)

• The soft tissue deterioration as a result of the disease process
and not as a direct effect of antiresorptives. Although there is
evidence that bisphosphonates are detected in saliva,(34) and
although direct effects of bisphosphonates in the gastric
mucosa in vivo and in oral mucosal cells in vitro are well
described,(35–37) evidence of bisphosphonates affecting the
oral mucosa in vivo or of denosumab being secreted in the
saliva or having a direct effect on oral mucosa cells are lacking.
Thus, soft tissue deterioration during the MRONJ process is
most likely the result of the disease progression and not a
direct toxic effect of the antiresorptive medications.

• Bone necrosis as an initiating event during MRONJ onset.
Strong clinical evidence has established the existence of stage
0 MRONJ, a phase of the disease in which no exposed bone is
observed clinically, but the patient presents with nonspecific
symptoms, clinical findings not explained by common dental
disease or radiographic findings such as altered trabecular
architecture, bone sclerosis, lack of osseous socket healing,
sequestration, or periosteal bone formation.(2,38–41) Impor-
tantly, 50% of stage 0 MRONJ cases transition to stage 1 or
2 MRONJ with clinical bone exposure within 6 months of
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original diagnosis.(42) Evidence from translational studies has
shown that although bone necrosis is present in nearly all ani-
mals receiving antiresorptives and experimental intervention,
bone exposure is found in a fraction of these animals with
bone necrosis.(43–48) These clinical and translational observa-
tions combined with the lack of in vivo evidence of a direct
effect of antiresorptives in the oral mucosa strongly support
bone necrosis as an early event in MRONJ onset, with soft tis-
sue breakdown after bone necrosis or being the direct effect of
traumatic intervention, such as tooth extraction or implant
placement.

Proposed Clinical Model of MRONJ
Pathophysiology

In constructing a model for MRONJ pathophysiology, first we
considered the healthy equilibrium of the oral cavity, particularly
of the oral mucosa, teeth, and underlying alveolar bone, and how
this equilibrium is altered at the setting of dental disease or oral
trauma. Then we considered how this balanced equilibrium in
health and unbalanced equilibrium in the presence of dental dis-
ease or oral trauma would be affected by the inhibition of oste-
oclastic activity in the presence of antiresorptive treatment.

Jaw homeostasis in the absence of antiresorptives

Healthy equilibrium

The maxilla and mandible are covered by masticatory mucosa
with keratinized or parakeratinized stratified squamous epithe-
lium in the attached gingiva and hard palate or by lining mucosa
with nonkeratinized stratified squamous epithelium in the areas
of free gingiva and vestibule. The oral epithelium is attached to
the noncellular basement membrane, which connects it to the
lamina propria, a thin layer of loose connective tissue, and the
submucosa, a dense layer of fibrocollagenous and elastic con-
nective tissue. The submucosa is absent in the areas of attached
gingiva and hard palate covered bymasticatory mucosa, and the
lamina propria is directly bound to the jaw bone.(49,50) Fibro-
blasts, macrophages, mast cells, and sparse inflammatory cells
can be found in the lamina propria, in addition to blood vessels,
nerves, and fibers immersed in an amorphous substance com-
posed of proteoglycans and glycoproteins.(51) A healthy oral
mucosa, with the continued proliferation and exfoliation of epi-
thelium and the presence of specialized immune cells, provides
a barrier against mostmicroorganisms and inhibits their penetra-
tion into deeper tissues.(52)

The maxilla and mandible demonstrate typical osseous archi-
tecture. The maxilla shows thin cortical outlines and sparse trabe-
culation, particularly in the posterior sextants, whereas the
mandible demonstrates thick cortical outlines and dense trabecu-
lation. Both bones are covered by a well-defined periosteal layer,
except in areas of muscle attachment or the temporomandibular
joint.(49) However, the jaws have specialized functions and display
distinct responses to developmental, mechanical, and homeo-
static stimuli.(53) Developmentally, the jaws originate from the
neural crest (the ectomesenchyme) and not from the
mesoderm,(54) and undergo intramembranous versus endochon-
dral ossification.(55) Growth factors and signaling pathways can
have distinct roles in the craniofacial versus axial and appendicu-
lar skeleton.(56,57) Osteoblasts and osteoclasts from the jaws show
diverse differentiation potential versus their counterparts from
other skeletal sites.(58–61) Single-cell analysis of mandibular versus

long-bone marrow reveals skeletal site-specific differences in the
immune microenvironment of these two bones.(62,63) The teeth
are held in the sockets through theperiodontal ligament, contain-
ing a dense network of Sharpey’s fibers extending from the root
cementum to a thin layer of bundle bone, called lamina dura, that
lines the wall of the tooth socket.(49)

Under baseline conditions, bones of the jaw undergo both
modeling and remodeling.(64–66) Modeling, the process through
which bone at a given location is either resorbed or formed,
occurs mainly during development and growth of the jaws. Dur-
ing modeling, various surfaces of the bone either form bone
through osteoblast activity or resorb bone through osteoclast
activity. Remodeling is the process where a given area
undergoes osteoclast resorption followed by osteoblast forma-
tion at the same spatial area.(67) Bone remodeling occurs on
bone surfaces, and intracortically (Fig. 1).(68) This intracortical
remodeling process is essential for maintaining the integrity of
the bone, replacing regions of bone with microdamage, nonvi-
able osteocytes, or areas with abnormal mineralization/organic
matrix. Most bones have capacity to both model and remodel.
One unique property of jaw remodeling is that there are regions
with very high remodeling rate. For example, the alveolar bone
has one of the highest rates of intracortical remodeling in the
whole skeleton, whereas the basal region demonstrates very
low remodeling rate.(69)

In the absence of any local or systemic disease, the soft, osse-
ous and dental tissues of the oral cavity respond to physiologic
functional stimuli of mastication and demonstrate a normal
appearance.

Local disease/local trauma

Several pathologies affect the oral environment and alter jaw-
bone homeostasis. The most common pathologic process of

Fig. 1. Bone remodeling occurs both within cortical bone and on bone
surfaces. A central tenet of bone physiology is remodeling, where the
coordinated spatial and temporal actions of osteoblasts and osteoclasts
renew damaged/compromised bone tissue. Remodeling occurs both
within cortical bone (intracortical/osteonal remodeling) and on bone sur-
faces. Image taken from a dog mandible (�15 months old). Blue arrows
point to osteonal remodeling within the alveolar cortical bone. Yellow
arrows point to surface remodeling on the surface adjacent to the tooth.

JBMR® Plus PATHOPHYSIOLOGY OF MRONJ 3 of 12 n



the jawbones involve extension of infectious dental disease to
the alveolar bone through the gingivae (periodontitis) or
through the tooth pulp (periapical disease).(70,71) In addition,
localized trauma, including tooth extraction, implant placement,
ill-fitting dentures, or increased masticatory forces at sites such
as tori, exostosis, or the lingual mandibular cortex at the retromo-
lar area, can affect the soft and hard tissues of the oral
cavity.(72,73)

Dental disease that extends in the periapical or periodontal
tissues causes localized infection, inflammation, and associated
bone loss.(70,71) This physiologic response of the oral tissues
localizes the infection in the peri-radicular tissues and limits its
spread. The bone resorbs away from the infection nidus, creating
space for mounting of an effective inflammatory response and
protecting the bone from the toxic inflammatory environment
(Fig. 2). Indeed, in periodontal and periapical disease, a microbial
biofilm forms on the root or interradicular surface and is sur-
rounded by an intense inflammatory infiltrate. At the periphery
of the lesion, activated osteoclasts are observed along the
resorbing alveolar bone.(70,74–76) In periodontitis, increased apo-
ptosis of inflammatory cells, periodontal cells, and osteocytes is
observed. Osteocytes undergoing apoptosis secrete cytokines
and particularly RANKL that stimulates osteoclast formation
and activity and results in the resorption of the dying bone.
The continued presence of periodontal or periapical disease

results in further destruction of periodontal tissues and associ-
ated bone loss.(77) In periodontitis, the biofilm formation on the
tooth surface and resultant inflammatory changes alter the junc-
tional epithelium at the dento-gingival junction and induce loss
of cellular continuity and detachment from the tooth surface and
conversion to pocket epithelium. The residual junctional epithe-
lium migrates apically and the periodontal pocket deepens.(70)

The above changes lead to decreased tooth support and eventu-
ally tooth mobility and tooth loss. Intervention to reverse the dis-
ease progression through plaque removal, endodontic
treatment, or tooth extraction aim to eliminate the infection,
resolve the inflammation, and induce healing of the soft and
hard alveolar tissues.

Similar to dental disease, localized trauma follows an analo-
gous process. The oral cavity is covered by keratinized or non-
keratinized epithelium and a thin mucosal lining.(49) The oral
mucosa is particularly thin in areas of bone exostoses (torus
palatinus, torus mandibularis, buccal exostoses) or at edentu-
lous alveolar ridge sites with a knife-edge ridge shape. As
such, injury to the oral mucosa can be in close proximity to
the maxillary or mandibular bone. In addition, iatrogenic inter-
ventions, such as tooth extractions or implant placement,
induce trauma to the oral cavity that extends and includes
the jawbone. A healthy response of the bone to this physio-
logic, paraphysiologic, or iatrogenic injury engages multiple
cell types with the osteoclasts playing a key role in bone
remodeling and normal healing.(72,73) In periodontal disease,
increased osteocyte apoptosis is observed.(46,77) Similarly, in
localized trauma, the bone resorbs away from the site of
increased forces, while the oral mucosa can develop a trau-
matic ulcer if the mechanical injury persists.(78,79) During tooth
extraction, bone necrosis ensues at early time points.(43,80) The
inflammatory response caused by the injury induces formation
and activation of osteoclasts that contribute to the remodel-
ing of the original socket outline and removal of the necrotic
bone at the periphery of the socket after the extraction.(72)

This osteoclastic activity is accompanied by a strong differen-
tiation of periodontal and marrow mesenchymal stem cells to
osteoblasts that form woven bone and fill in the socket from
its periphery.(81,82) Subsequent activity removes a large
amount of the woven bone and transitions the remaining
bone into normal lamellar structured trabeculae and cortex.(72)

Finally, during implant placement, the coordinated function of
recruited osteoclasts and differentiated osteoblasts at the
implant site create a close association of the bone with the
implant surface and successful osseointegration of the implant
fixture.(73,82)

Jaw homeostasis in the presence of antiresorptives

Healthy equilibrium

Homeostasis and remodeling of alveolar tissues is fundamentally
altered during osteoclast inhibition. In the absence of dental dis-
ease, reduced osteoclast function leads to suppression of bone
remodeling(69) and an overall increased bone mass,(83) similar to
other skeletal sites. Radiographically, this presents as an overall
increase in radiographic bone density and increased thickness of
cortical outlines and lamina dura around the tooth socket out-
line.(84,85) No mucosal or submucosal changes are observed.(45–47)
) During the physiologic function of the oral tissues, these osseous
changes are well tolerated and do not generate clinical, radio-
graphic, or histologic signs of MRONJ.

Fig. 2. Response of alveolar bone to periapical disease in vehicle (Veh)-
and zoledronate (ZOL)-treated animals. (A) μCT sections demonstrate sig-
nificant periapical bone loss in Veh-treated animals. (B) Inhibition of bone
resorption by ZOL results in minimal periapical bone loss. (C) Histologic
assessment of Veh-treated animals demonstrates bone resorption away
from the nidus of the infection at the root apex. A strong inflammatory
response with abscess formation at the apical areas and a more fibrous
periphery are noted. (D) In ZOL-treated animals, the bone is in very close
proximity to the apex. A strong inflammatory response at the nidus of the
infection at the root apex is noted. The inflammatory infiltrate extends to
themarrow spaces of the periapical bone. Blue arrows point to the extent
of periapical bone loss. Yellow arrows point to areas of inflammatory infil-
trate. (Figure modified from Hadaya and colleagues(90)).
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Periodontal or periapical disease or local trauma

The progression of periodontal or periapical disease are severely
compromised during inhibition of resorption. At the very early dis-
ease stages of periodontal or periapical disease, when only soft tis-
sues are involved, it is reasonable to assume that no differences
between the absence or presence of antiresorptives would be
observed. However, as the infection persists and inflammatory
changesexpand to involve thealveolar bone, thedefectiveosteoclas-
tic functionand/or reducedosteoclast numbers compromise theabil-
ity to remove the alveolar bone away from the inflammatory nidus
(Fig. 2).(45–47,86–90) Similar observations are found in local trauma,
where the absence of osteoclastic activity inhibits remodelingof orig-
inal bone during palatal wounding,(80,91) or tooth extraction.(90,92–94)

The inflammatory environment is toxic for osteocytes. Indeed,
inflammatory cytokines, such as TNF-a, IL-6, and IL-1, can induce
osteocyte apoptosis. Apoptosing osteocytes secrete signals that
either directly or indirectly activate osteoclasts that resorb the
necrotic bone.(77) However, in the presence of antiresorptives
and inhibition of osteoclastic function, the necrotic bone is
retained.(45–48,88–90,95) Empty osteocytic lacunae accumulate in
sites adjacent to inflammation and not throughout the alveolar
bone, supporting a local niche that favors osteonecrosis rather
than a generalized and uniformly distributed bone necrosis.(46,96)
) In addition, the rate of osteocyte death duringMRONJ establish-
ment and progression is enhanced and the extent of necrotic
bone increases (Fig. 3).(46) During local trauma by palatal denu-
dation, a considerably more extensive osteonecrosis is observed
in the presence of zoledronate (ZOL).(80)

Osteocytic death duringMRONJ likely involvesmultiplemech-
anisms, including apoptosis and cell necrosis, and is observed at
early stages of disease setting.(97–99) Dying osteocytes release
cellular signals that enhance the degree and severity of peri-
odontal tissue inflammation. The presence of necrotic bone that

cannot be removed further inhibits healing of periodontal tis-
sues. Changes in the oral submucosa adjacent to developing
areas of osteonecrosis are observed as early as 1 week and
before bone exposure. Such changes include a decreased arteri-
ole and venule network and increased expression of oxidative
stress, hypoxia, and cell apoptosis markers.(100) Furthermore,
the network of collagen fibers connecting the submucosa to
the alveolar bone is interrupted in areas of osteonecrosis.(94)

As a result, an overall increase in the inflammatory infiltrate of
the periodontal tissues adjacent to the necrotic bone and an
altered inflammatory response are noted.(46–48,87,90,101,102) Simi-
larly, in local trauma by palatal wounding or tooth extraction,
an intense neutrophil aggregation is observed adjacent to the
necrotic bone in the presence, but not in the absence, of antire-
sorptives.(103,104) Importantly, duringMRONJ development, there
is a shift toward a prolonged pro-inflammatory environ-
ment.(15,19) Suppression of adaptive regulatory T cells (Tregs)
and activation of inflammatory T-helper-producing interleukin
17 cells (Th17) are observed.(44) Prolonged duration of ligature-
induced periodontitis increases infiltration of pathogenic Th17
cells, enhances expression of Th17-related cytokines such as
IL-1β, IL-6, and IL-17, and exacerbates MRONJ development. This
increased Th17 cell population and resultant cytokine secretion
promote macrophage polarization toward a classically activated
M1 pro-inflammatory phenotype versus an alternatively acti-
vated M2 anti-inflammatory phenotype.(16,17,26,105) Thus, a per-
petual forward feedback loop is established that promotes
inflammation and inhibits healing around areas of osteonecrosis.

Response of the oral mucosa

In periodontal disease in the presence of antiresorptives, the junc-
tional epithelium demonstrates apical proliferation. However,
because of the inhibition of alveolar bone resorption, the distance
between the migrating epithelium and the nonresorbed necrotic
bone decreases.(46–48,101) Eventually, the migrating epithelium
rims the necrotic bone, which becomes exposed to the oral cavity
(Fig. 4).(48) The molecular signals that lead to the epithelial migra-
tion are unknown. However, prominent expression of collagen
type III and increased numbers of cells expressing high MMP-9
and MMP-13 levels or cells positive for a-SMA, presumably myofi-
broblasts, are found apical to migrating epithelium and around
sites of osteonecrosis.(94) Interestingly, increased duration of peri-
odontal disease augments the incidence of MRONJ,(95,105) while
prevention or decrease of periodontal disease severity reduces
MRONJ presence,(106) demonstrating a time dependence between
the two entities.

The close proximity of the alveolar bone to the infection nidus
caused by the inhibition of bone resorption increases the proba-
bility of infection spreading to the necrotic bone.(88) Indeed, bac-
terial presence is noted around osteonecrotic areas in rats
treated with ZOL, but not in control animals, after extraction of
teeth with periapical disease.(90) In patients with clinical MRONJ
lesions, a heavy biofilm formation is present on the necrotic
bone surface.(107–110) The presence of infection most likely com-
promises the ability of soft and osseous tissues to heal because
aggressive local wound care of exposed bone that reduces pla-
que accumulation and inflammation significantly improves over-
all disease resolution and decreases time to resolution.(111)

Tooth extraction

The setting of osteonecrosis and continued and augmented pres-
ence of inflammation result in clinical symptomatology that often

Fig. 3. Onset of medication-related osteonecrosis of the jaw (MRONJ)
around teeth with periapical disease in zoledronate (ZOL)-treated mice.
Red arrows point to localized osteonecrotic areas at the alveolar crest
marked by empty osteocytic lacunae, green arrows to presence of osteo-
cytes marking vital bone, double white arrows to periosteal bone depo-
sition adjacent to osteonecrotic areas, blue arrows to inflammatory
infiltrate, and yellow arrows to vascular structures. (Figure modified from
Kang and colleagues(46)).
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requires extraction of the culprit teeth. Although frank bone expo-
sure might not exist at the time, stage 0 MRONJ is often present
and can escape clinical detection. Highly suppressed osteoclastic
function and the resultant cellular and tissue changes from the pre-
ceding periodontal or periapical disease in combination with the
added trauma of tooth extraction create a “perfect storm” that
severely compromises healing of the extraction socket. Lack of
woven bone formation, presence of empty socket, and poor healing
of oral mucosa precipitate the setting of bone exposure and clinical
MRONJ.(90,92,93,103,112,113) Both periodontal and periapical disease, as
well as tooth extraction, increase turnover of the alveolar
bone.(114,115) In these areas of localized increased turnover, higher
accumulation of bisphosphonate deposition is expected.(116–118)

It is important to note that the great majority of published arti-
cles employing animal models of MRONJ utilize extraction of
healthy teeth in the presence of antiresorptives. However,
extraction of healthy teeth does not parallel the clinical experi-
ence. The vast majority of tooth extractions in adults is the sequel
of dental caries, periodontal disease, periapical disease, or dental
trauma.(102,119–122) This is expected to be the case in patients on
antiresorptives, where unnecessary extraction of healthy teeth
would be contraindicated.

Select studies employing MRONJ animal models with extrac-
tion of healthy teeth in the presence of high doses of antiresorp-
tives report abnormal healing of the extraction socket with
presence of necrotic areas but clinically normal soft-tissue

healing.(44,104,123–125) Importantly, adjunctive therapies, includ-
ing steroids or chemotherapy, the presence of low vitamin D
levels, or diabetes, in association with high doses of antiresorp-
tives more predictably result in mucosal defects and exposure
of the non-healed extraction sockets.(44,104,125,126) These con-
comitant morbidities likely compromise mucosal and osseous
healing and precipitate the occurrence of clinical disease.

Interestingly, reports that directly compare extraction of healthy
versus diseased teeth in the presence of antiresorptives report a
higher incidence of MRONJ-like features, including bone exposure,
osteonecrosis, lack of socket healing, and persistence of inflamma-
tion after extractionof teethwithpre-existingperiapical or periodon-
tal disease.(90,93,94,112,113) Extraction of healthy teeth results in woven
bone formation in the extraction socket, persistence of the original
socket outlines due to inhibition of remodeling, and increased areas
of necrotic bone, presumably because these necrotic areas cannot
be removed in the absence of osteoclastic activity. However, the
great majority of the extraction sockets heal with normal mucosa
and the incidence of bone exposure is low (Fig. 5).(90)

Proposed Model for the Pathogenesis of MRONJ

Figure 6 depicts a proposed model for the pathogenesis of
MRONJ. In the absence of antiresorptives and dental disease a
healthy, functional equilibrium is achieved (Fig. 6A). Dental

Fig. 4. Progression ofmedication-related osteonecrosis of the jaw (MRONJ) onset with developing bone exposure inmice treatedwith various antiresorp-
tives. (A) Vehicle (VEH)-treated healthy animal. (B) Vehicle-treated animal with dental disease shows strong inflammatory infiltrate (blue arrow) and apical
epithelial migration (yellow arrow). Alveolar bone is resorbed apically, away from the epithelium (white arrow). (C) RANK-Fc (a denosumab surrogate)-
treated mouse with dental disease. Bone resorption is inhibited and necrotic bone is present at the alveolar crest (green arrow). Epithelial migration
extends to the necrotic bone (yellow arrow). Inflammatory infiltrate is present (blue arrow). (D) OPG-Fc (a denosumab surrogate)-treatedmouse with den-
tal disease. Bone resorption is inhibited and necrotic bone is present at the alveolar crest (green arrows). Epithelium has migrated apically (yellow arrow)
and reams the necrotic bone, which is exposed to the oral cavity. (E) Zoledronate (ZOL)-treated mouse. Bone resorption is inhibited and necrotic bone is
present at the alveolar crest (green arrows). Epithelium has migrated apically (yellow arrow) and demonstrates prominent reaming of the necrotic bone,
resulting in extensive bone exposure.
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disease (periodontal disease is depicted as blue shaded area,
Fig. 6B) leads to mucosal and submucosal inflammatory changes
including osteoclast activation. The alveolar bone resorbs away
of the inflammatory nidus (black arrows, Fig. 6B). A chronic
inflammation is established with episodic exacerbations and
progressive loss of periodontal support. Continued presence of
dental disease eventually necessitates tooth extraction
(Fig. 6C). Removal of the tooth eliminates the infectious stimulus,
the inflammation resolves, and the extraction socket heals
uneventfully and is covered by normal mucosa.

In the presence of antiresorptives and absence of dental dis-
ease, the healthy functional equilibrium is maintained. Increased
trabecular density could be observed as a result of osteoclast
inhibition; however, the alveolar bone remains vital (Fig. 6D). In
the presence of dental disease (periodontal disease is depicted
here), the inflammatory changes extend to the alveolar bone.

The osteoclast inhibition impedes bone resorption and the alve-
olar bone is exposed to the inflammatory/infectious environ-
ment. Bone necrosis ensues (darkened alveolar bone, Fig. 6E).
The presence of necrotic bone intensifies host responses with
increased oxidative stress and a shift toward pro-inflammatory
cytokine secretion (IL-17, IL-1, IL-6) and pro-inflammatory
immune cell (M1macrophage polarization, increased Th17) pres-
ence, while anti-inflammatory immune cell (Tregs and M2 mac-
rophages) numbers decrease. Apical epithelial migration and
rimming of the necrotic bone can result in bone exposure. The
enhanced inflammatory responses and potential bone exposure
further compound bone cell damage and cause osteonecrosis
expansion. Thus, a perpetual positive feedback loop is estab-
lished that augments tissue injury. Clinically, at the early stages,
the patient presents with stage 0 MRONJ symptoms, while sub-
sequent bone exposure can lead to clinical MRONJ.

Fig. 5. Extraction of healthy teeth or teeth with periapical disease in zoledronate (ZOL)-treated animals. (A) Clinically extraction sockets of healthy teeth
healed with normal mucosa (white arrows). (B) In contrast, extraction sockets of teeth with periapical disease showed areas of bone exposure (red arrows).
(C) μCT assessment demonstrated extraction sockets of healthy teeth filled with woven bone (yellow arrow). Socket outlines are clearly demarcated. (D)
Extraction sockets of teeth with periapical disease lack bone formation and appear empty, with socket outlines clearly defined (red arrows). (E) Histologic
assessment demonstrates woven bone formation in the extraction socket of healthy teeth (white arrow). The margins of the extraction socket and the
woven bone are clearly outlined. (F) In contrast, sockets of extracted teeth with periapical disease are void of bone formation, with the socket outlines
visible and presence of osteonecrosis (blue arrows), debris, and bone exposure (aqua arrow). (Figure modified from Hadaya and colleagues(90)).
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Persistence of dental disease ultimately leads to tooth extrac-
tion. The cellular changes from the onset of osteonecrosis and
the added trauma from the extraction induce significant insult
to the alveolar tissues and compromise soft and osseous healing.
The extraction socket fails to heal, the area of infection/
inflammation (blue shaded area) and osteonecrosis (darkened
alveolar bone) expand and clinical MRONJ is established
(Fig. 6F). The exposed bone is colonized by bacteria and the
inflammatory response is further enhanced. The same perpetual
positive feedback loop is established and soft and osseous tissue
changes, typical of MRONJ, progress.

Based on the above model, removal of dental disease at early
stages should halt the disease progress, reduce the need of tooth
extraction, and decrease the MRONJ incidence. Indeed, clinical
studies have demonstrated that oral preventive measures,
including diagnosis and treatment of dental disease, decrease
the incidence of MRONJ in oncologic patients.(127,128)

Future Directions of Translational MRONJ
Research

MRONJ remains a rare but serious complication of antiresorptive
medications that often impedes proper control of the systemic
disease. Furthermore, the fear of developing adverse effects such
as MRONJ or atypical femoral fractures decreases treatment
compliance for patients who are or are scheduled to be on

antiresorptives and raises concerns about an imminent crisis in
the management of osteoporosis.(129–131)

Reducing MRONJ incidence and improving treatment out-
comes would not only benefit the patients with the disease but
also all patients on antiresorptive medications. However, several
areas of MRONJ pathogenesis, progression, and prognosis
remain unknown and limit effective disease management.
Although a relationship with dose and duration of antiresorp-
tives and incidence of MRONJ has been shown, definition of
exposure levels (cumulative dose load, ie, mg equivalents of an
antiresorptive/years of exposure) has not been established. The
mechanistic contribution of systemic comorbidities (smoking,
diabetes, autoimmune diseases, malignancies) or medications
(chemotherapies, corticosteroids, immune modulators, antian-
giogenics, signaling inhibitors) and of local risk factors (surgical
procedures, dental disease, anatomic factors, oral microbiome)
need to be delineated in detail. Genetic determinants and prog-
nostic biomarkers need to be validated such that individuals at
higher risk to develop the disease or at subclinical stages before
developing frank symptomatology are effectively identified.
Usefulness of drug “holidays” in mitigating the risk of develop-
ing MRONJ or in reducing the severity of established disease,
without compromising control of the systemic disease, need to
be clarified. Effectiveness of nonoperative versus operative
approaches for various MRONJ stages, antiresorptive regimens,
and patient condition needs to be demonstrated, such that
patients and providers can make evidence-based informed deci-
sions. The possible contribution of inherent differences of

Fig. 6. Proposed model for medication-related osteonecrosis of the jaw (MRONJ) pathogenesis. AR = antiresorptive; BP = bisphosphonate.
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cellular responses to antiresorptives between the jaws versus
other skeletal sites needs to be investigated further. Finally, dis-
covery of targeted pharmacologic interventions to manipulate
and support the mucosal, osseous, immune, and vascular heal-
ing response of the oral tissues and decrease or eliminateMRONJ
burden would expand the armamentarium of approaches for
MRONJ management.

The low incidence of MRONJ makes recruitment of large
patient cohorts challenging to obtain and prospective studies
difficult to design. Animal models that capture key clinical, radio-
graphic, and histologic features of the disease offer important
tools to assess key variables of disease establishment, progres-
sion, overall burden, and intervention effectiveness. Species that
have been used in animal models of MRONJ include rat, mouse,
rice rat, rabbit, dog, sheep, and pig.(132) Although translational
animal studies can provide valuable insights, several methodo-
logical challenges complicate data interpretation, comparison
across studies, and conclusive relevance to the clinical reality.
Such challenges include:

• Differences in the structure of soft and hard tissues between
humans versus animals. This is particularly important for studies
utilizing small rodents, where the cortical bonehas a lamellar ver-
sus Haversian canal structure and does not undergo intracortical
remodeling except for in response to interventions.(133,134)

Potential implications of such structural and physiological differ-
ences in MRONJ pathophysiology are currently unclear.

• The need to utilize suprapharmacologic doses of antiresorp-
tives in an effort to increase the incidence of MRONJ. Thus,
the possibility of off-target cellular and molecular effects that
might not occur in the clinical setting should always be
considered.

• Antiresorptive treatment regimens including dose, course of
treatment, total cumulative dose, route of administration,
presence of concomitant therapies (chemotherapy, anti-
angiogenic factors, immunomodulators, etc), duration of pre-
treatment before or of treatment after implementation of local
instigating factors (ie, tooth extraction, experimental peri-
odontal or periapical disease, implant placement, etc.) vary
significantly among various animal studies.

• The uniform utilization of criteria that define the presence of
MRONJ in animal models. Clinically or histologically present
bone exposure is used in many but not all studies. Often the
presence of histologically necrotic bone is the only parameter
reported as the presence of MRONJ. The mere presence of his-
tologically necrotic bone without evidence of exposure does
not parallel the clinical diagnosis of the disease. Even stage
0MRONJ that does not present bone exposure is characterized
by nonspecific clinical and/or radiographic findings and not
only by the presence of bone areas with empty osteocytic
lacunae.

• The utilization of healthy teeth extractions as a local instigat-
ing factor in the majority of animal studies, that, as described
earlier, does not parallel the clinical reality.

• The technically challenging surgical procedure of tooth extrac-
tion, particularly if the crown integrity has been compromised,
that often results in root fragments remaining within the
extraction sockets, often found in published reports. Such root
fragments compromise proper socket healing in the absence
or presence of antiresorptives and do not reflect the clinical
setting. Animals, or at least extraction sockets, with radio-
graphic or histologic evidence of root fragment presence
should be excluded from data analyses.

Several of the above challenges are intimately related with the
use of animal studies to explore human diseases, such as structural
differences of osseous structures, differences in cortical bone
remodeling physiology, or the need to administer suprapharma-
cologic antiresorptive doses. However, others can and should be
addressed to create uniform and accepted models for transla-
tional studies. The field of MRONJ research would greatly benefit
and advance from standardized antiresorptive treatment regi-
mens; clearly established clinical, radiographic, and histologic cri-
teria for disease presence, progression, severity, and resolution;
clinically relevant and consistent across studies implementation
of local instigating interventions to induce the disease; and rigor-
ous and meticulous technical approaches to eliminate erroneous
findings.
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